SymPy Tutorial

Aaron Meurer, Ondřej Čertík, Amit Kumar, Jason Moore, Sartaj Singh, Harsh Gupta

SymPy

July 11, 2016

All materials for today’s tutorial are at
http://www.sympy.org/scipy-2016-tutorial/
Outline

SymPy Introduction
- Goal
- Features
- History
- Present
- Future

Tutorial
- Intro to SymPy and Basic features
- Solving real life problems
SymPy Goal

Goal
Provide a symbolic manipulation library in Python.
SymPy Goal

Goal
Provide a symbolic manipulation library in Python.

“SymPy is an open source Python library for symbolic mathematics. It aims to become a full-featured computer algebra system (CAS) while keeping the code as simple as possible in order to be comprehensible and easily extensible. SymPy is written entirely in Python and does not require any external libraries.”
Why SymPy?

- Standalone
- Full featured
- BSD licensed
- Embraces Python
- Usable as a library
Features

- **Core Capabilities**
 - Basic arithmetic: Support for operators such as +, -, *, /, ** (power)
 - Simplification
 - Expansion
 - Functions: trigonometric, hyperbolic, exponential, roots, logarithms, absolute value, spherical harmonics, factorials and gamma functions, zeta functions, polynomials, special functions, . . .
 - Substitution
 - Numbers: arbitrary precision integers, rationals, and floats
 - Noncommutative symbols
 - Pattern matching

- **Polynomials**
 - Basic arithmetic: division, gcd, . . .
 - Factorization
 - Square-free decomposition
 - Gröbner bases
 - Partial fraction decomposition
 - Resultants

- **Calculus**
 - Limits: \(\lim_{x \to 0} x \log(x) = 0 \)
 - Differentiation
 - Integration: It uses extended Risch-Norman heuristic
 - Taylor (Laurent) series

- **Solving equations**
 - Polynomial equations
 - Algebraic equations
 - Differential equations
 - Difference equations
 - Systems of equations

- **Combinatorics**
 - Permutations
 - Combinations
 - Partitions
 - Subsets
 - Permutation Groups: Polyhedral, Rubik, Symmetric, . . .
 - Prüfer and Gray Codes
Features

- **Discrete math**
 - Binomial coefficients
 - Summations
 - Products
 - Number theory: generating prime numbers, primality testing, integer factorization, ...
 - Logic expressions

- **Matrices**
 - Basic arithmetic
 - Eigenvalues/eigenvectors
 - Determinants
 - Inversion
 - Solving
 - Abstract expressions

- **Geometric Algebra**

- **Geometry**
 - points, lines, rays, segments, ellipses, circles, polygons, ...
 - Intersection
 - Tangency
 - Similarity

- **Plotting**
 - Coordinate modes
 - Plotting Geometric Entities
 - 2D and 3D
 - Interactive interface
 - Colors

- **Physics**
 - Units
 - Mechanics
 - Quantum
 - Gaussian Optics
 - Pauli Algebra

- **Statistics**
 - Normal distributions
 - Uniform distributions
 - Probability

- **Printing**
 - Pretty printing: ASCII/Unicode pretty printing, LaTeX
 - Code generation: C, Fortran, Python
History

- Ondřej Čertík started the project in 2006.
- Development took off in 2007 when SymPy first participated in Google Summer of Code. We have participated in every Google Summer of Code since.
- In 2011, Aaron Meurer (who also joined from Google Summer of Code) took over as lead developer.
Present

Current Status

- Over 450 contributors.
- Current code base has over 400,000 lines of code and documentation.
- We have crossed the point of “sympy a toy” to “sympy a tool”
Future

GSoC (1/2)
These are our current GSoC projects. Expect to see these features by the end of the summer.

- Group Theory, Gaurav Dhingra
- Extending solveset, Kshitij Saraogi
- Completing Solveset, Shekhar Prasad Rajak
- Implementation of Holonomic Functions, Shubham Tibra
- Implementation of Singularity Functions to solve Beam Bending problems, Sampad Kumar Saha
Future

GSoC (2/2)

These are our current GSoC projects. Expect to see these features by the end of the summer.

- Adding to SymEngine’s Polynomial functionality and interfacing it with FLINT & Piranha Srajan Garg
- Implementing Finite Fields and Set module in SymEngine Nishant Nikhil
Future

Other Plans

- New assumptions
- Make things faster
- SymEngine (https://github.com/symengine)
- Implement more algorithms, so we can compute more things (and also make them faster)
- Replacing solve with solveset
- Encourage people to use SymPy for many applications
- https://github.com/sympy/sympy/wiki/gsoc-2016-ideas for full list of things we want done
Projects Using SymPy

- **Sage**: A CAS, visioned to be a viable free open source alternative to Magma, Maple, Mathematica and MATLAB. Sage includes many open source mathematical libraries, including SymPy.

- **SageMathCloud**: SageMathCloud is a web-based cloud computing and course management platform for computational mathematics.

- **Mathpix**: An iOS App, that detects handwritten math as input, and uses SymPy Gamma to evaluate the math input and generate the relevant steps to solve the problem.

- **PyDy**: Multibody Dynamics with Python.

- **IKFast**: IKFast is a robot kinematics compiler provided by OpenRAVE. It analytically solves robot inverse kinematics equations and generates optimized C++ files. It uses SymPy for its internal symbolic mathematics.
Projects Using SymPy

- **Octave Symbolic**: The Octave-Forge Symbolic package adds symbolic calculation features to GNU Octave. These include common CAS tools such as algebraic operations, calculus, equation solving, Fourier and Laplace transforms, variable precision arithmetic, and other features.

- **galgebra**: Geometric algebra (previously sympy.galgebra).

- **SymPy.jl**: Provides a Julia interface to SymPy using PyCall.

- **Mathics**: Mathics is a free, general-purpose online CAS featuring Mathematica compatible syntax and functions. It is backed by highly extensible Python code, relying on SymPy for most mathematical tasks.

- **SfePy**: Simple finite elements in Python.
Projects Using SymPy

- **Quameon**: Quantum Monte Carlo in Python.
- **Lcapy**: Experimental Python package for teaching linear circuit analysis.
- **Quantum Programming in Python**: Quantum 1D Simple Harmonic Oscillator and Quantum Mapping Gate.
- **LaTeX Expression project**: Easy LaTeX typesetting of algebraic expressions in symbolic form with automatic substitution and result computation.
- **Symbolic statistical modeling**: Adding statistical operations to complex physical models.
Authors

Ondřej Čertík
Fabian Pedregosa
Jurjen N.E. Bos
Mateusz Paprocki
Marc-Etienne M. leveille
Brian Jorgensen
Jason Gedge
Robert Schwarz
Pearu Peterson
Fredrik Johansson
Chris Wu
Ulrich Hecht
Goutham
Lakshminarayan
David Lawrence
Jaroslaw Tworek
David Marek
Bernhard R. Link
Andrej Tokarčík
Or Dvory
Saroj Adhikari
Pauli Virtanen
Robert Kern
James Aspnes
Nimish Telang
Abderrahim Kitouni
Pan Peng
Friedrich Hagedorn
Elronder
Elbenfuerst
Rizgar Mella
Felix Kaiser
Roberto Nobrega
David Roberts
Sebastian Krämer
Vinzent Steinberg
Riccardo Gori
Case Van Horsen
Stepan Roucka
Ali Raza Syed
Stefano Maggiolo
Robert Cimmrman
Bastian Weber
Sebastian Krause
Sebastian Kreft
Dan
Alan Bromborsky
Boris Timokhin
Robert
Andy R. Terrel
Hubert Tsang
Konrad Meyer
Henrik Johansson
Priot Laes
Freddie Witherden
Brian E. Granger
Andrew Straw
Kaifeng Zhu
Ted Horst
Andrew Docherty
Akshay Srinivasan
Aaron Meurer
Barry Wardell
Tomasz Buchert
Vinay Kumar
Johann
Cohen-Tanugi
Jochen Voss
Luke Peterson
Chris Smith
Thomas Sidoti
Florian Mickler
Nicolas Poulcelot
Ben Goodrich
Toon Verstraelen
Ronan Lamy
James Abbbatiello
Ryan Krauss
Bill Flynn
Kevin Goodsell
Jorn Baayen
Eh Tan
Renato Coutinho
Oscar Benjamin
Øyvind Jensen
Julio Idichek Filho
Łukasz Pankowski
Chu-Ching Huang
Fernando Perez
Raffaele De Feo
Christian Muise
Matt Curry
Kazuo Thow
Christian Schubert
Jezreel Ng
James Pearson
Matthew Brett
Addison Cugini
Nicholas J.S. Kinar
Harold Erbin
Thomas Dixon
Cristóvão Sousa
Andre de Fortier
Smit
Mark Dewing
Alexey U.
Gudchenko
Gary Kerr
Sherjil Ozair
Oleksandr Gituliar
Sean Vig
Prafullkumar P. Tale
Vladimir Perić
Tom Bachmann
Yuri Karadzhoj
Authors (continued)

Vladimir Lagunov
Matthew Rocklin
Saptarshi Mandal
Gilbert Gede
Anatolii Koval
Tomo Lazovich
Pavel Fedotov
Jack McCaffery
Jeremias Yehdegho
Kibeom Kim
Gregory Ksionda
Tomáš Bambas
Raymond Wong
Luca Weihs
Shai ‘Deshe’
Wyborski
Thomas Wiecki
Óscar Nájera
Mario Pernici
Benjamin McDonald
Sam Magura
Stefan Krastanov
Bradley Froehle
Min Ragan-Kelley
Emma Hogan
Nikhil Sarda
Julien Rioux
Roberto Colistete, Jr.
Raoul Bourquin
Gert-Ludwig Ingold
Srinivas Vasudevan
Jason Moore
Miha Marolt
Tim Lahey
Luis Garcia
Matt Rajca
David Li
Alexandr Gudulin
Bilal Akhtar
Grzegorz Świński
Matt Habel
David Ju
Nichita Utiu
Nikolay Lazarov
Steve Anton
Imran Ahmed
Manzoor
Ljubiša Moćić
Piotr Korgul
Jim Zhang
Sam Sleight
tsmars15
Chancellor Arkantos
Stepan Simsa
Tobias Lenz
Siddhanathan
Shanmugam
Tiffany Zhu
Tristan Hume
Alexey Subach
Joan Creus
Geoffry Song
Puneeth Chaganti
Sanket Kostrzewa
Natalia Nawara
vishal
Shruti Mangipudi
Davy Mao
Swapnil Agarwal
Kendhia
jerryma1121
Joachim Durchholz
Martin Povišer
Siddhant Jain
Kevin Hunter
Michael Mayorov
Nathan Alison
Christian Bühler
Carsten Knoll
Bharath M R
Matthias Toews
Sergiu Ivanov
Jorge E. Cardona
Sai Nikhil
Aleksandar Makelov
Sachin Irukula
Raphael Michel
Ashwini Oruganti
Andreas Kloeckner
Prateek Papriwal
Arpit Goyal
Angadh Nanjangud
Comer Duncan
Jens H. Nielsen
Joseph Dougherty
marshall2389
Guru Devanla
George Waksman
Alexandr Popov
Tarun Gaba
Takafumi Arakaki
Saurabh Jha
Rom le Clair
Angus Griffith
Timothy Reluga
Brian Stephanik
Alexander
Eberspächer
Sachin Joglekar
Tyler Pirtle
Vasily Povalyaev
Colleen Lee
Authors (continued)

Maciej Baranski
Benjamin Gudehus
Faisal Anees
Mark Shoulson
Robert Johansson
Kalevi Suominen
Kaushik Varanasi
Fawaz Alazemi
Ambar Mehrotra
David P. Sanders
Peter Brady
John V. Siratt
Sarwar Chahal
Nathan Woods
Colin B. Macdonald
Marcus Näslund
Clemens Novak
Mridul Seth
Craig A. Stoudt
Raj
Mihai A. Ionescu
immerrr
Chai Wah Wu
Leonid Blouvshtein
Peleg Michaeli
ck Lux
zsc347
Hamish Dickson
Michael Gallaspy
Roman Inflianskas
Duane Nykamp
Ted Dokos
Sunny Aggarwal
Victor Brebenar
Akshat Jain
Shivam Vats
Longqi Wang
Juan Felipe Osorio
GitRay
Lukas Zorich
Eric Miller
Venkata Ramana
Cody Herbst
Nishith Shah
AMiT Kumar
Yury G. Kudryashov
Guillaume Gay
Ray Cathcart
Mihir Wadwekar
Tuan Manh Lai
Asish Panda
Darshan Chaudhary
Alec Kalinin
Ralf Stephan
Aaditya Nair
Jayesh Lahori
Harshil Goel
Luv Agarwal
Jason Ly
Lokesh Sharma
Sartaj Singh
Chris Swierczewski
Konstantin Togoi
Param Singh
Sumith
Juha Remes
Philippe Bouafia
Peter Schmidt
Jiaxing Liang
Lucas Jones
Gregory Ashton
Jennifer White
Renato Orsino
Michael Boyle
Alistair Lynn
Govind Sahai
Adam Bloomston
Kyle McDaniel
Nguyen Truong Duy
Alex Lindsay
Mathew Chong
Jason Siefken
Gaurav Dhingra
Gao, Xiang
Kevin Ventullo
mao8
Isuru Fernando
Shivam Tyagi
Richard Otis
Rich LaSota
dustyrockpyle
Anton Akhmerov
Michael Zingale
Chak-Pong Chung
David T
Phil Ruffwind
Sebastian Koslowski
Kumar Krishna
Agrawal
Dustin Gadal
operte
Yu Kobayashi
Shashank Kumar
Timothy Cyrus
Devyani Kota
Keval Shah
Dzhelil Rufat
Pastafarianist
Sourav Singh
Jacob Garber
Vinay
Authors (continued)

GolimarOurHero
Prashant Tyagi
Matthew Davis
Tschijnmo TSCHAU
Alexander Bentkamp
Moo VI
Jack Kemp
Kshitij Saraogi
Thomas Baruchel
Nicolás Guarín-Zapata
Jens Jørgen Mortensen
Sampad Kumar Saha
Eva Charlotte Mayer
Laura Domine
Justin Blythe
Meghana
Madhyastha
Tanu Hari Dixit
Shekhar Prasad Rajak
Aqnoon
Mohammed
Arafat Dad Khan
Boris Atamanovskiy
Sam Tygier
Jai Luthra
Guo Xingjian
Sandeep Veethu
Archit Verma
Shubham Tibra
Ashutosh Saboo
Michael S. Hansen
Anish Shah
Harshil Goel
Guillaume Jacquenot
Bhautik Mavani
Michał Radwański
Jerry Li
Pablo Zubieta
Curious72
Chaitanya Sai Alaparthi
arihant parsoya
Ruslan Pisarev
Akash Trehan
Nishant Nikhil
Vladimir Poluhsin
Akshay Nagar
James Brandon
Milam
Abhinav Agarwal
Rishabh Daal
Sanya Khurana
Aman Deep
Aravind Reddy
Abhishek Verma
Matthew Parnell
Thomas Hickman
Akshay Siramdas
YiDing Jiang
Jatin Yadav
Matthew Thomas
Rehas Sachdeva
Michael Mueller
Srajan Garg
Prabhjot Singh
Haruki Moriguchi
Tom Gijselinck
Nitin Chaudhary
Alex Argunov
Nathan Musoke
Abhishek Garg
Dana Jacobsen
Vasiliy Dommes
Phillip Berndt
Haimo Zhang
Subham Tibra
Anthony Scopatz
bluebrook
Normal Human
Josh Burkart
Dimitra Konomi
ChristinaZografou
FiachAntaw
Langston Barrett
Krit Karan
G. D. McBain
Prempal Singh
Here at SciPy

Talks

 Monday 1:30 PM - 5:30 PM - Room 103

- Aaron Meurer, Anthony Scopatz *SymPy Code Generation*.
 Thursday 11:30 PM - 12:00 PM - Room 204

 Friday 3:30 - 4:00 - Room 204
Let’s begin!